比思論壇

標題: Linux设备驱动之字符设备驱动 [打印本頁]

作者: skylor    時間: 2015-9-29 16:32
標題: Linux设备驱动之字符设备驱动

每一个字符设备或块设备都在/dev目录下对应一个设备文件。linux用户程序通过设备文件(或称设备节点)来使用驱动程序操作字符设备和块设备。

二、字符设备、字符设备驱动与用户空间访问该设备的程序三者之间的关系。

如图,在Linux内核中使用cdev结构体来描述字符设备,通过其成员dev_t来定义设备号(分为主、次设备号)以确定字符设备的唯一性。通过其成员file_operations来定义字符设备驱动提供给VFS的接口函数,如常见的open()、read()、write()等。

在Linux字符设备驱动中,模块加载函数通过register_chrdev_region( ) 或alloc_chrdev_region( )来静态或者动态获取设备号,通过cdev_init( )建立cdev与file_operations之间的连接,通过cdev_add( )向系统添加一个cdev以完成注册。模块卸载函数通过cdev_del( )来注销cdev,通过unregister_chrdev_region( )来释放设备号。

用户空间访问该设备的程序通过Linux系统调用,如open( )、read( )、write( ),来“调用”file_operations来定义字符设备驱动提供给VFS的接口函数。

三、字符设备驱动模型

1. 驱动初始化

1.1. 分配cdev

在2.6的内核中使用cdev结构体来描述字符设备,在驱动中分配cdev,主要是分配一个cdev结构体与申请设备号,以按键驱动为例:

1 /*……*/
2 /* 分配cdev*/
3 struct cdev btn_cdev;
4 /*……*/
5 /* 1.1 申请设备号*/
6 if(major){
7 //静态
8 dev_id = MKDEV(major, 0);
9 register_chrdev_region(dev_id, 1, "button");
10 } else {
11 //动态
12 alloc_chardev_region(&dev_id, 0, 1, "button");
13 major = MAJOR(dev_id);
14 }
15 /*……*/



从上面的代码可以看出,申请设备号有动静之分,其实设备号还有主次之分。

在Linux中以主设备号用来标识与设备文件相连的驱动程序。次编号被驱动程序用来辨别操作的是哪个设备。cdev 结构体的 dev_t 成员定义了设备号,为 32 位,其中高 12 位为主设备号,低20 位为次设备号。

设备号的获得与生成:

获得:主设备号:MAJOR(dev_t dev);

次设备号:MINOR(dev_t dev);

生成:MKDEV(int major,int minor);

设备号申请的动静之分:

静态:

1

2

1 int register_chrdev_region(dev_t from, unsigned count, const char *name);
2 /*功能:申请使用从from开始的count 个设备号(主设备号不变,次设备号增加)*/



静态申请相对较简单,但是一旦驱动被广泛使用,这个随机选定的主设备号可能会导致设备号冲突,而使驱动程序无法注册。

动态:

1

2

1 int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count,const char *name);
2 /*功能:请求内核动态分配count个设备号,且次设备号从baseminor开始。*/



动态申请简单,易于驱动推广,但是无法在安装驱动前创建设备文件(因为安装前还没有分配到主设备号)。

1.2. 初始化cdev

1

2

1 void cdev_init(struct cdev *, struct file_operations *);
2 cdev_init()函数用于初始化 cdev 的成员,并建立 cdev 和 file_operations 之间的连接。



1.3. 注册cdev

1

2

1 int cdev_add(struct cdev *, dev_t, unsigned);
2      cdev_add()函数向系统添加一个 cdev,完成字符设备的注册。



1.4. 硬件初始化

硬件初始化主要是硬件资源的申请与配置,以TQ210的按键驱动为例:

1

2

3

4

5

1 /* 1.4 硬件初始化*/
2 //申请GPIO资源
3 gpio_request(S5PV210_GPH0(0), "GPH0_0");
4 //配置输入
5 gpio_direction_input(S5PV210_GPH0(0));



2.实现设备操作

用户空间的程序以访问文件的形式访问字符设备,通常进行open、read、write、close等系统调用。而这些系统调用的最终落实则是file_operations结构体中成员函数,它们是字符设备驱动与内核的接口。以TQ210的按键驱动为例:

1 /*设备操作集合*/
2 static struct file_operations btn_fops = {
3 .owner = THIS_MODULE,
4 .open = button_open,
5 .release = button_close,
6 .read = button_read
7 };



上面代码中的button_open、button_close、button_read是要在驱动中自己实现的。file_operations结构体成员函数有很多个,下面就选几个常见的来展示:

2.1. open()函数

原型:

1 int(*open)(struct inode *, struct file*);
2 /*打开*/



2.2. read( )函数

原型:

ssize_t(*read)(struct file *, char __user*, size_t, loff_t*);
/*用来从设备中读取数据,成功时函数返回读取的字节数,出错时返回一个负值*/



2.3. write( )函数

原型:

1 ssize_t(*write)(struct file *, const char__user *, size_t, loff_t*);
2 /*向设备发送数据,成功时该函数返回写入的字节数。如果此函数未被实现,
3 当用户进行write()系统调用时,将得到-EINVAL返回值*/



2.4. close( )函数

原型:

1 int(*release)(struct inode *, struct file*);
2 /*关闭*/



2.5. 补充说明

1. 在Linux字符设备驱动程序设计中,有3种非常重要的数据结构:struct file、struct inode、struct file_operations。

struct file 代表一个打开的文件。系统中每个打开的文件在内核空间都有一个关联的struct file。它由内核在打开文件时创建, 在文件关闭后释放。其成员loff_t f_pos 表示文件读写位置。

struct inode 用来记录文件的物理上的信息。因此,它和代表打开文件的file结构是不同的。一个文件可以对应多个file结构,但只有一个inode结构。其成员dev_t i_rdev表示设备号。

struct file_operations 一个函数指针的集合,定义能在设备上进行的操作。结构中的成员指向驱动中的函数,这些函数实现一个特别的操作, 对于不支持的操作保留为NULL。

2. 在read( )和write( )中的buff 参数是用户空间指针。因此,它不能被内核代码直接引用,因为用户空间指针在内核空间时可能根本是无效的——没有那个地址的映射。因此,内核提供了专门的函数用于访问用户空间的指针:

1 unsigned long copy_from_user(void *to, const void __user *from, unsigned long count);
2 unsigned long copy_to_user(void __user *to, const void *from, unsigned long count);



3. 驱动注销

3.1. 删除cdev

在字符设备驱动模块卸载函数中通过cdev_del()函数向系统删除一个cdev,完成字符设备的注销。

1

2

3

4

/*原型:*/
void cdev_del(struct cdev *);
/*例:*/
cdev_del(&btn_cdev);



3.2. 释放设备号

在调用cdev_del()函数从系统注销字符设备之后,unregister_chrdev_region()应该被调用以释放原先申请的设备号。

1

2

3

4

/*原型:*/
void unregister_chrdev_region(dev_t from, unsigned count);
/*例:*/
unregister_chrdev_region(MKDEV(major, 0), 1);



四、字符设备驱动程序基础:

4.1 cdev结构体

在Linux2.6 内核中,使用cdev结构体来描述一个字符设备,cdev结构体的定义如下:

1 struct cdev {
2
3 struct kobject kobj;
4
5 struct module *owner; /*通常为THIS_MODULE*/
6
7 struct file_operations *ops; /*在cdev_init()这个函数里面与cdev结构联系起来*/
8
9 struct list_head list;
10
11 dev_t dev; /*设备号*/
12
13 unsigned int count;
14
15 };



cdev 结构体的dev_t 成员定义了设备号,为32位,其中12位是主设备号,20位是次设备号,我们只需使用二个简单的宏就可以从dev_t 中获取主设备号和次设备号:

MAJOR(dev_t dev)

MINOR(dev_t dev)

相反地,可以通过主次设备号来生成dev_t:

MKDEV(int major,int minor)

4.2 Linux 2.6内核提供一组函数用于操作cdev 结构体

1:void cdev_init(struct cdev*,struct file_operations *);
2:struct cdev *cdev_alloc(void);
3:int cdev_add(struct cdev *,dev_t,unsigned);
4:void cdev_del(struct cdev *);



其中(1)用于初始化cdev结构体,并建立cdev与file_operations 之间的连接。(2)用于动态分配一个cdev结构,(3)向内核注册一个cdev结构,(4)向内核注销一个cdev结构

4.3 Linux 2.6内核分配和释放设备号

在调用cdev_add()函数向系统注册字符设备之前,首先应向系统申请设备号,有二种方法申请设备号,一种是静态申请设备号:

5:int register_chrdev_region(dev_t from,unsigned count,const char *name)

另一种是动态申请设备号:

6:int alloc_chrdev_region(dev_t *dev,unsigned baseminor,unsigned count,const char *name);

其中,静态申请是已知起始设备号的情况,如先使用cat /proc/devices 命令查得哪个设备号未事先使用(不推荐使用静态申请);动态申请是由系统自动分配,只需设置major = 0即可。

相反地,在调用cdev_del()函数从系统中注销字符设备之后,应该向系统申请释放原先申请的设备号,使用:

7:void unregister_chrdev_region(dev_t from,unsigned count);

4.4 cdev结构的file_operations结构体

这个结构体是字符设备当中最重要的结构体之一,file_operations 结构体中的成员函数指针是字符设备驱动程序设计的主体内容,这些函数实际上在应用程序进行Linux 的 open()、read()、write()、close()、seek()、ioctl()等系统调用时最终被调用。

1 struct file_operations {
2
3 /*拥有该结构的模块计数,一般为THIS_MODULE*/
4 struct module *owner;
5
6 /*用于修改文件当前的读写位置*/
7 loff_t (*llseek) (struct file *, loff_t, int);
8
9 /*从设备中同步读取数据*/
10 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
11
12 /*向设备中写数据*/
13 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
14
15
16 ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
17 ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
18 int (*readdir) (struct file *, void *, filldir_t);
19
20 /*轮询函数,判断目前是否可以进行非阻塞的读取或写入*/
21 unsigned int (*poll) (struct file *, struct poll_table_struct *);
22
23 /*执行设备的I/O命令*/
24 int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
25
26
27 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
28 long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
29
30 /*用于请求将设备内存映射到进程地址空间*/
31 int (*mmap) (struct file *, struct vm_area_struct *);
32
33 /*打开设备文件*/
34 int (*open) (struct inode *, struct file *);
35 int (*flush) (struct file *, fl_owner_t id);
36
37 /*关闭设备文件*/
38 int (*release) (struct inode *, struct file *);
39
40
41 int (*fsync) (struct file *, struct dentry *, int datasync);
42 int (*aio_fsync) (struct kiocb *, int datasync);
43 int (*fasync) (int, struct file *, int);
44 int (*lock) (struct file *, int, struct file_lock *);
45 ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
46 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
47 int (*check_flags)(int);
48 int (*flock) (struct file *, int, struct file_lock *);
49 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
50 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
51 int (*setlease)(struct file *, long, struct file_lock **);
52 };



4.5 file结构

file 结构代表一个打开的文件,它的特点是一个文件可以对应多个file结构。它由内核再open时创建,并传递给在该文件上操作的所有函数,直到最后close函数,在文件的所有实例都被关闭之后,内核才释放这个数据结构。

在内核源代码中,指向 struct file 的指针通常比称为filp,file结构有以下几个重要的成员:

1 struct file{
2
3 mode_t fmode; /*文件模式,如FMODE_READ,FMODE_WRITE*/
4
5 ......
6
7 loff_t f_pos; /*loff_t 是一个64位的数,需要时,须强制转换为32位*/
8
9 unsigned int f_flags; /*文件标志,如:O_NONBLOCK*/
10
11 struct file_operations *f_op;
12
13 void *private_data; /*非常重要,用于存放转换后的设备描述结构指针*/
14
15 .......
16
17 };



4.6 inode 结构

内核用inode 结构在内部表示文件,它是实实在在的表示物理硬件上的某一个文件,且一个文件仅有一个inode与之对应,同样它有二个比较重要的成员:

1 struct inode{
2
3 dev_t i_rdev; /*设备编号*/
4
5 struct cdev *i_cdev; /*cdev 是表示字符设备的内核的内部结构*/
6
7 };
8
9 可以从inode中获取主次设备号,使用下面二个宏:
10
11 /*驱动工程师一般不关心这二个宏*/
12
13 unsigned int imajor(struct inode *inode);
14
15 unsigned int iminor(struct inode *inode);





作者: mmggss    時間: 2015-12-18 18:07
还配了图楼主写的好详细
作者: givemeyourpic    時間: 2016-2-11 08:06
哇 这个好高深啊
作者: yellow_yzy000    時間: 2016-7-9 21:43
提示: 作者被禁止或刪除 內容自動屏蔽




歡迎光臨 比思論壇 (http://108.170.5.78/) Powered by Discuz! X2.5